
Dr. Michael KL Wong Associate Consultant Grantham Hospital

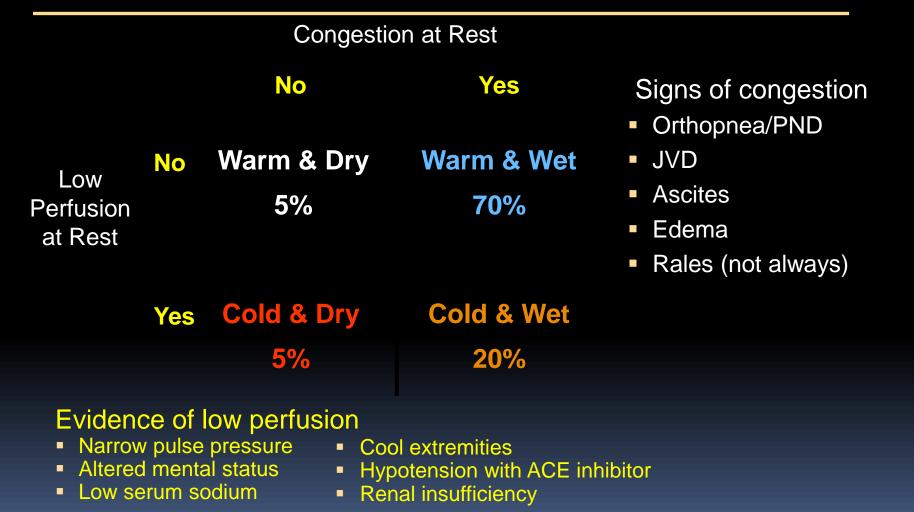
DIFFERENCES AMONG VARIES PERCUTANEOUS MECHANICAL CIRCULATORY SUPPORT DEVICES

Differences in clinical scenario for percutaneous MCS
Differences of percutaneous MCS devices

Differences in clinical scenario

Difference in severity

- Heart Failure ? Cardiogenic shock?
- Hypotension = shock?
- Any BP cutoff for shock?
- Use SBP/MBP for shock?
- SBP100-140 is safe?
- How do you know patient is in shock??


Difference in support needed

- Myocardial infarction
- Acute right heart failure
- Fulminant myocarditis with biventricular failure
- Refractory cardiac arrest

Heart Failure ? Cardiogenic shock?

Hemodynamic Profiles in Heart Failure

Stevenson LW. Eur J Heart Fail. 1999;1:251

Hypotension = shock?

Today

- BP 80/55 Pulse 76
- BW 64.1 Ht 168cm
- ECG SR rate 73 QRS 95ms
- Came alone
- Walk unaided
- Currently taking lasix 40mg BD from private since 19/6/2017
- No worsening HF symptom
- No chest pain/dizziness
- Good drug compliance
- Clinically compensated
 - Zestril 10mg BD
 - Carvedilol 3.125mg Daily
 - Hytrin 1mg daily
 - Aldactone 50mg daily
 - Lasix 40mg BD

SBP100-140 is safe?

- Adrenaline 8mg/100ml D5 20ml/hour
- Noradrenaline 8mg/100ml D5 20ml/hour
- BP 110/90 Pulse 110
- Happy??

SCAI Statement for Cardiogenic Shock 2019

<u>SCAI Clinical Expert Consensus Statement on the Classification of Cardiogenic Shock.</u> *Catheter Cardiovasc Interv* 2019; May 19

SCAI Statement for Cardiogenic Shock 2019

Stage	Description	Physical exam/bedside findings	Biochemical markers	Hemodynamics
A At risk	A patient who is not currently experiencing signs or symptoms of CS, but is at risk for its development. These patients may include those with large acute myocardial infarction or prior infarction acute and/or acute on chronic heart failure symptoms.	Normal JVP Lung sounds clear Warm and well perfused • Strong distal pulses • Normal mentation	Normal labs • Normal renal function • Normal lactic acid	Normotensive (SBP≥100 or normal for pt.) If hemodynamics done • cardiac index ≥2.5 • CVP <10 • PA sat ≥65%
B Beginning CS	A patient who has clinical evidence of relative hypotension or tachycardia without hypoperfusion.	Elevated JVP Rales in lung fields Warm and well perfused • Strong distal pulses • Normal mentation	Normal lactate Minimal renal function impairment Elevated BNP	SBP <90 OR MAP <60 OR >30 mmHg drop from baseline Pulse ≥100 If hemodynamics done • cardiac index ≥2.2 • PA sat ≥65%
C Classic CS	A patient that manifests with hypoperfusion that requires intervention (inotrope, pressor or mechanical support, including ECMO) beyond volume resuscitation to restore perfusion. These patients typically present with relative hypotension.	May Include Any of: Looks unwell Panicked Ashen, mottled, dusky Volume overload Extensive rales Killip class 3 or 4 BiPap or mechanical ventilation Cold, clammy Acute alteration in mental status Urine output <30 mL/h	May Include Any of: Lactate ≥2 Creatinine doubling OR >50% drop in GFR Increased LFTs Elevated BNP	May Include Any of: SBP <90 OR MAP <60 OR >30 mmHg drop from baseline AND drugs/device used to maintain BP above these targets Hemodynamics • cardiac index <2.2 • PCWP >15 • RAP/PCWP ≥0.8 • PAPI <1.85 • cardiac power output ≤0.6
D Deteriorating/ doom	A patient that is similar to category C but are getting worse. They have failure to respond to initial interventions.	Any of stage C	Any of Stage C AND: Deteriorating	Any of Stage C AND: Requiring multiple pressors OR addition of mechanical circulatory support devices to maintain perfusion
E Extremis	A patient that is experiencing cardiac arrest with ongoing CPR and/or ECMO, being supported by multiple interventions.	Near Pulselessness Cardiac collapse Mechanical ventilation Defibrillator used	"Trying to die" CPR (A-modifier) pH ≤7.2 Lactate ≥5	No SBP without resuscitation PEA or refractory VT/VF Hypotension despite maximal support

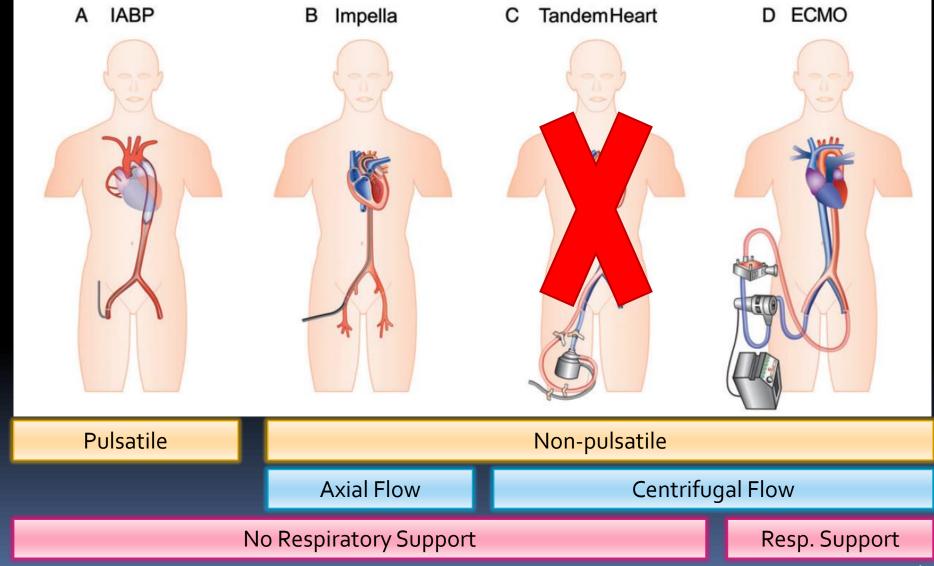
<u>SCAI Clinical Expert Consensus Statement on the Classification of Cardiogenic Shock.</u> *Catheter Cardiovasc Interv*_2019;May 19

Indications for Percutaneous MCS

TABLE 1 Suggested Indications	for Percutaneous MCS		
Indication	Comments		
Complications of AMI	Ischemic mitral regurgitation is particularly well-suited to these devices as the hemodynamic disturbance is usually acute and substantial. Acutely depressed LV function from large AMI during and after primary PCI is an increasing indication for temporary MCS use. Cardiogenic shock from RV infarction can be treated with percutaneous right ventricular support.		
Severe heart failure in the setting of nonischemic cardiomyopathy	Examples include severe exacerbations of chronic systolic heart failure as well as acutely reversible cardiomyopathies such as fulminant myocarditis, stress cardiomyopathy, or peripartum cardiomyopathy. In patients presenting in INTERMACS profiles 1 or 2, MCS can be used as a bridge to destination VAD placement or as a bridge to recovery if the ejection fraction rapidly improves (108).		
Acute cardiac allograft failure	Primary allograft failure (adult or pediatric) may be due to acute cellular or antibody-mediated rejection, prolonged ischemic time, or inadequate organ preservation.		
Post-transplant RV failure	Acute RV failure has several potential causes, including recipient pulmonary hypertension, intraoperative injury/ ischemia, and excess volume/blood product resuscitation. MCS support provides time for the donor right ventricle to recover function, often with the assistance of inotropic and pulmonary vasodilator therapy (109).		
Patients slow to wean from cardiopulmonary bypass following heart surgery	Although selected patients may be transitioned to a percutaneous system for additional weaning, this is rarely done.		
Refractory arrhythmias	Patients can be treated with a percutaneous system that is somewhat independent of the cardiac rhythm. For recurrent, refractory, ventricular arrhythmias, ECMO may be required for biventricular failure.		

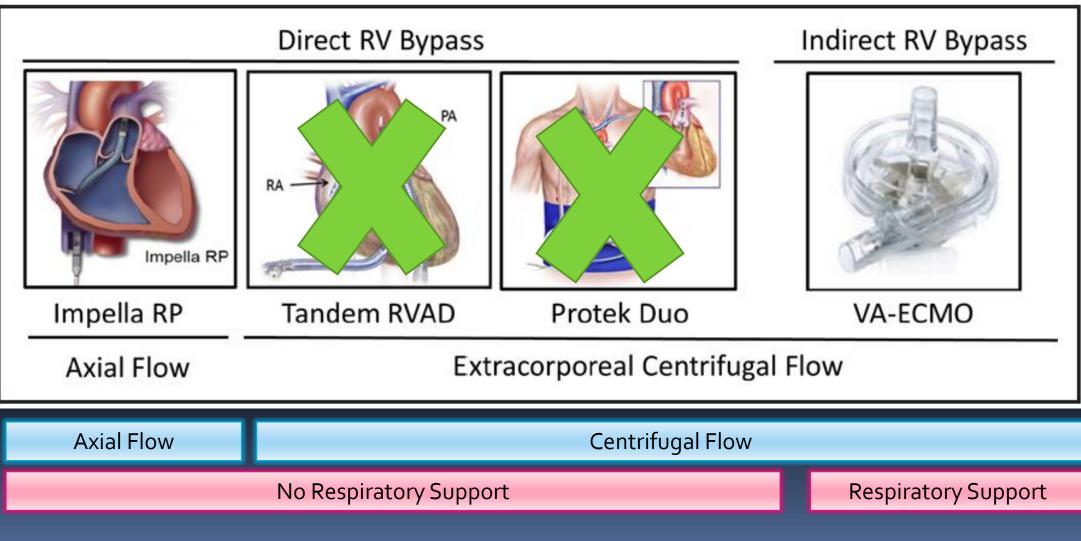
IMPORTANT AIMS

Augment LV and/or RV cardiac output Reduce filling pressure of LV (LAP/PCWP) and/or RV (RAP) +/- additional respiratory support


Question 1

- What is the ESC heart failure guideline recommendation for routine use of IABP in acute myocardial infarction complicated with cardiogenic shock?
 - A. Class I
 - **B.** Class IIa
 - C. Class IIb
 - D. Class III

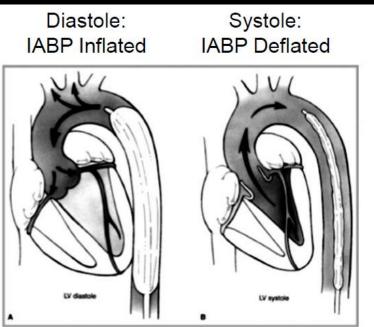
Question 2


- Veno-arterial Extracorporeal Membrane Oxygenation (VA-ECMO) can provide the following support:
 - A. circulatory support alone
 - **B**. respiratory support alone
 - C. both circulatory and respiratory support
 - D. none of the above

Differences in Percutaneous MCS Left Ventricular Support

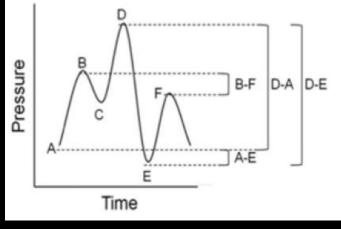
European Heart Journal (2014) 35, 156–167

Differences in Percutaneous MCS Right Ventricular Support


Circulation. 2017;136:314–326.

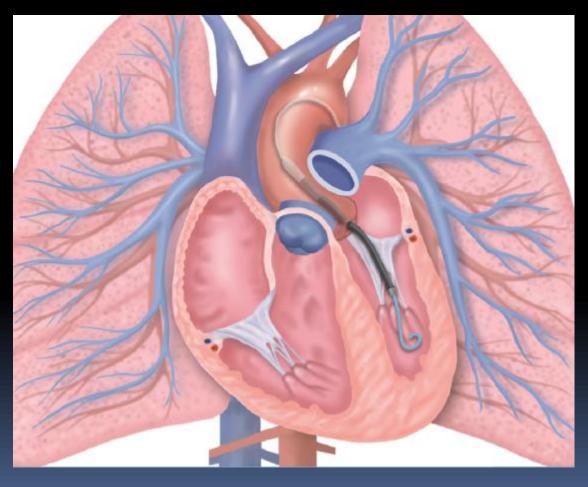
Question 3

- Which of the following percutaneous mechanical circulatory support devices provide the LEAST cardiac output augmentation/support?
 - A. IABP
 - B. VA-ECMO
 - C. Impella CP
 - D. Impella 5.0

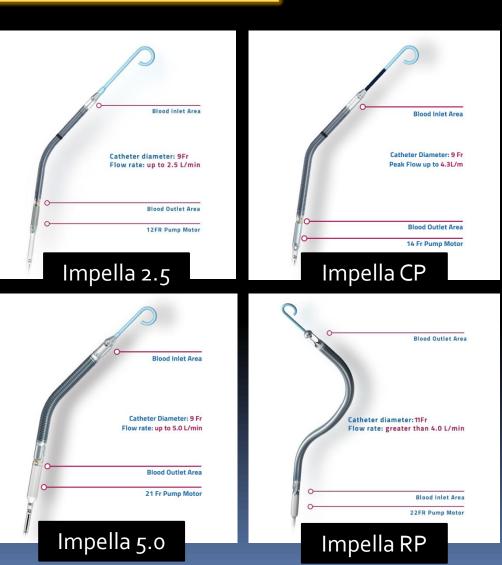

IABP

LV output – Mild increase LAP/PCWP – Decrease Right side support – passive Respiratory support – passive

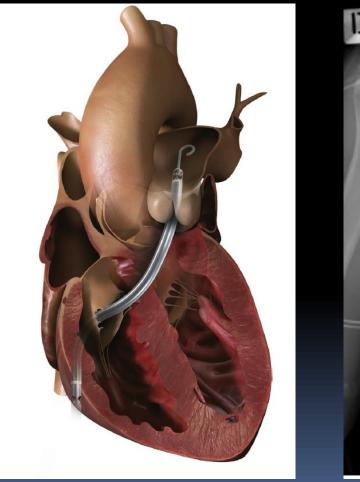
Windkessel Effect Volume displacement creates a negative pressure sink in the aorta



Non-Augmented Diastolic Pressure (A) Non-Augmented Systolic Pressure (B) Dicrotic Notch Pressure (C) Augmented Diastolic Pressure (D) Reduced Aortic End-Diastolic Pressure (E) Augmented Reduced Systolic Pressure (F) Systolic Unloading (B-F) Diastolic Augmentation (D-A) Diastolic unloading (A-E) Deflation Pressure (D-E) Slope of Deflation Pressure (mmHg/sec)

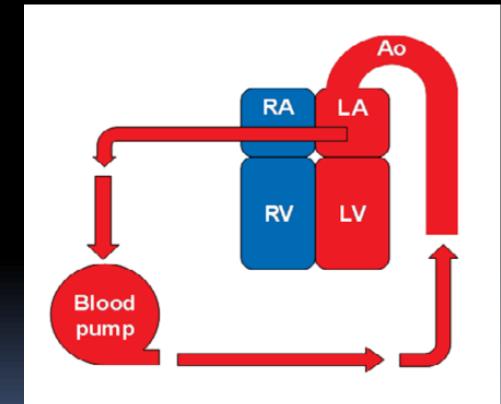

- Augment Aortic Diastolic Pressure
- Reduce LV afterload
- Improve coronary perfusion (increase myocardial supply demand ratio)

Impella


LV output – Increase LAP/PCWP – Decrease Right side support – Need additional Impella RP/ECMO Respiratory support – passive

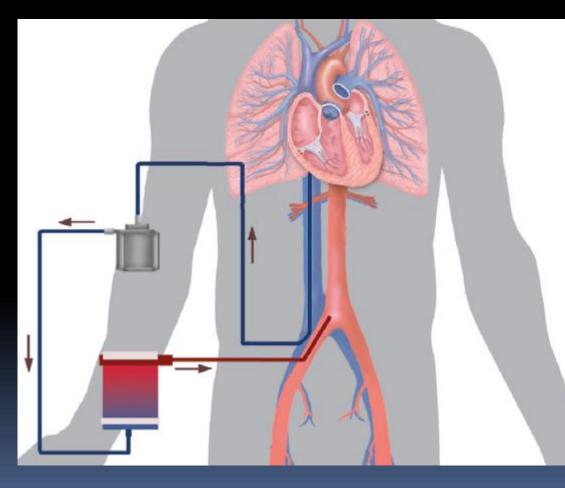
Burkhoff, D. et al. J Am Coll Cardiol. 2015; 66(23):2663–74

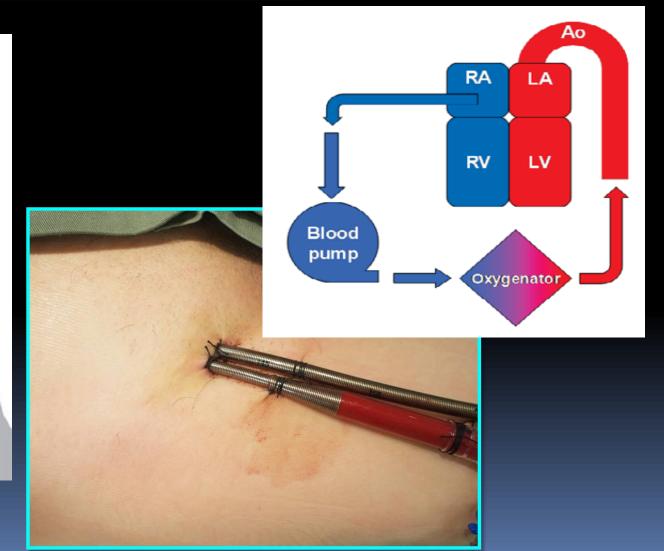
Impella RP



Journal of Cardiothoracic and Vascular Anesthesia 32(2018) 2339–2343

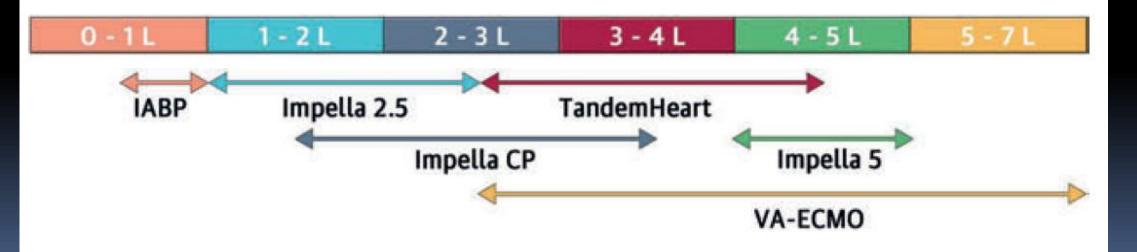
Tandem Heart


LV output – Reduced; total systemic flow increase LAP/PCWP – Decrease Right side support – passive Respiratory support – passive

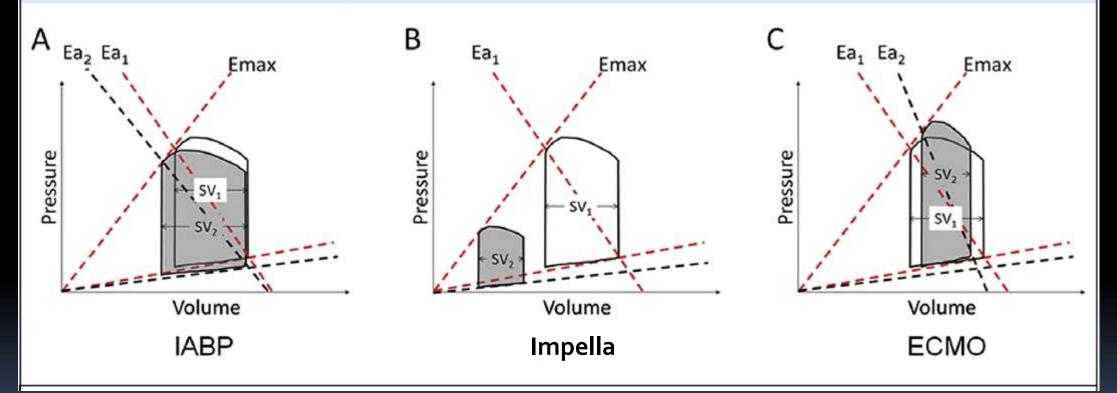


VA-ECMO

LV output – Reduced, total systemic flow increased LAP/PCWP – Increase/unchange Right side support – Yes Respiratory support – Yes



Burkhoff, D. et al. J Am Coll Cardiol. 2015; 66(23):2663–74


	IABP	VA-ECMO	Impella
Cost	~ 5-8K	~ 40-70K	~ 260K
Experience in Hong Kong	20 years	5-10 years	~3-5 years
Service availability	Every center	Most centers	Some centers

Comparison of pMCS devices and their impact on cardiac flow

JACC Cardiovasc Interv. 2016 May 9;9(9):871-83

JAm Coll Cardiol. 2015 May 19;65(19):2140-1.

Table 3 Proposed haemodynamic effects of the mechanical circulatory support devices

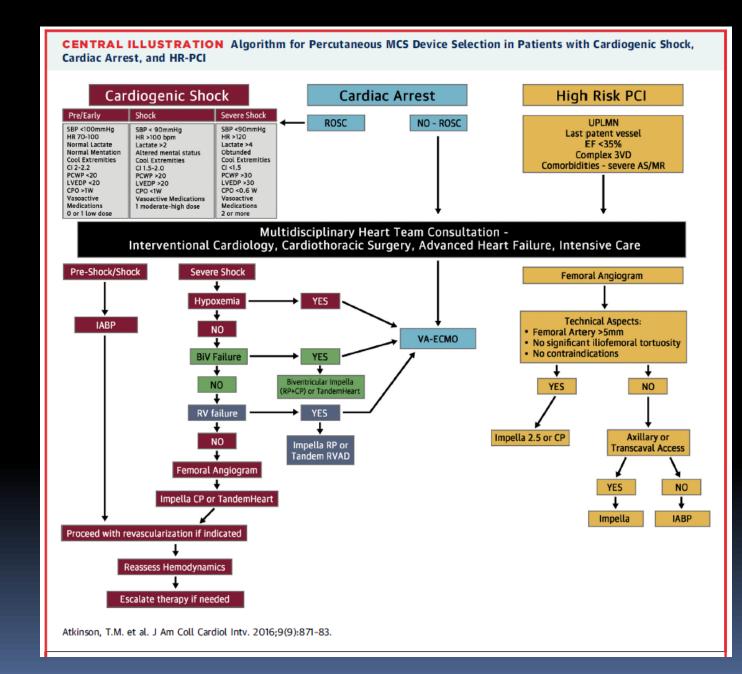
	IABP	ECMO	Tandem Heart	Impella
Afterload	Reduced	Increased	Increased	Neutral
LV stroke volume	Slight increase	Reduced	Reduced	Reduced
Coronary perfusion	Slight increase	Unknown	Unknown	Unknown
LV pre-load	Slightly reduced	Reduced	Reduced	Slightly reduced
PCW pressure	Slightly reduced	Reduced	Reduced	Slightly reduced
Peripheral tissue perfusion	No significant increase	Improved	Improved	Improved

Table 2 Comparison of devices

	IABP	ECMO	TandemHeart	Impella 2.5	Impella 5.0
Pump mechanism	Pneumatic	Centrifugal	Centrifugal	Axial flow	Axial flow
Cannula size	7.9 Fr	18–21 Fr inflow;15–22 Fr outflow	21 Fr inflow; 15–17 Fr outflow	13 Fr	22 Fr
Insertion technique	Descending aorta via the femoral artery	Inflow cannula into the right atrium via the femoral vein, outflow cannula into the descending aorta via the femoral artery	21 Fr inflow cannula into left atrium via femoral vein and transseptal puncture and 15–17 Fr outflow cannula into the femoral artery	12 Fr catheter placed retrogradely across the aortic valve via the femoral artery	21 Fr catheter placed retrog across the aortic valve vi surgical cutdown of the fo artery
Haemodynamic support	0.5 – 1.0 L min ⁻¹	$>4.5 \text{Lmin}^{-1}$	4 L min ⁻¹	2.5 L min ⁻¹	5.0 L min ⁻¹
Implantation time	+	++	+++	++	++++
Risk of limb ischaemia	+	+++	+++	++	++
Anticoagulation	+	+++	+++	+	+
Haemolysis	+	++	++	++	++
Post-implantation management complexity	+	+++	++++	++	++
Optional active cooling in post- cardiopulmonary resuscitation patients	No	Yes	(Yes)	No	No

Contraindications and Complications

TABLE 5 MCS Device Contraindications and Complications


	IABP	Impella	TandemHeart	VA-ECMO
Contraindications	Moderate to severe AR Severe PAD Aortic disease	LV thrombus Mechanical aortic valve Aortic stenosis with AVA <0.6 Moderate to severe AR Severe PAD Contraindication to anticoagulation	Severe PAD HIT DIC Contraindications to anticoagulation LA thrombus VSD Moderate to severe AR	Contraindications to anticoagulation Moderate to severe AR Severe PAD
Complications	Stroke Limb ischemia Vascular trauma Balloon rupture Thrombocytopenia Acute kidney injury Bowel ischemia Infection	Device migration Device thrombosis Limb ischemia Vascular trauma Hemolysis Infection Stroke	Air embolism Thromboembolism Device Dislodgement Cardiac tamponade Limb ischemia Vascular trauma Hemolysis Infection Stroke	Bleeding Vascular trauma Limb ischemia Compartment syndrome Acute kidney injury Hemolysis Thromboembolism Air embolism Infection Neurological Injury
Bleeding/hemolysis	+	++	++	++
Vascular complications	+	++	+++	++++

Question 4

- Which of the following is NOT an appropriate consideration for use of percutaneous mechanical circulatory support device?
 - A. Massive pulmonary embolism with unstable hemodynamics despite maximal medical treatment
 - **B.** Severe viral pneumonia with ARDS and stable hemodynamics
 - C. Acute myocardial infarction complicated with cardiogenic shock
 - **D**. High risk percutaneous coronary intervention

Clinical Application

Case sharing

JACC Cardiovasc Interv. 2016 May 9;9(9):871-83

Case 1 ECMO E-CPR \rightarrow LVAD(CentriMag) \rightarrow Transplant

Massive Anterior STEMI 25/10/2016 Primary PCI to LM/LAD Refractory VT/VF VA-ECMO as ECPR

20歲工程師心臟功能不足15% 急需換心續命 列輪候名單首位
 損文: 朱韻要 發佈日期: 2017-04-20 15:31 最後更新日期: 2017-04-20 21:20

Heart Transplant 8/5/2017

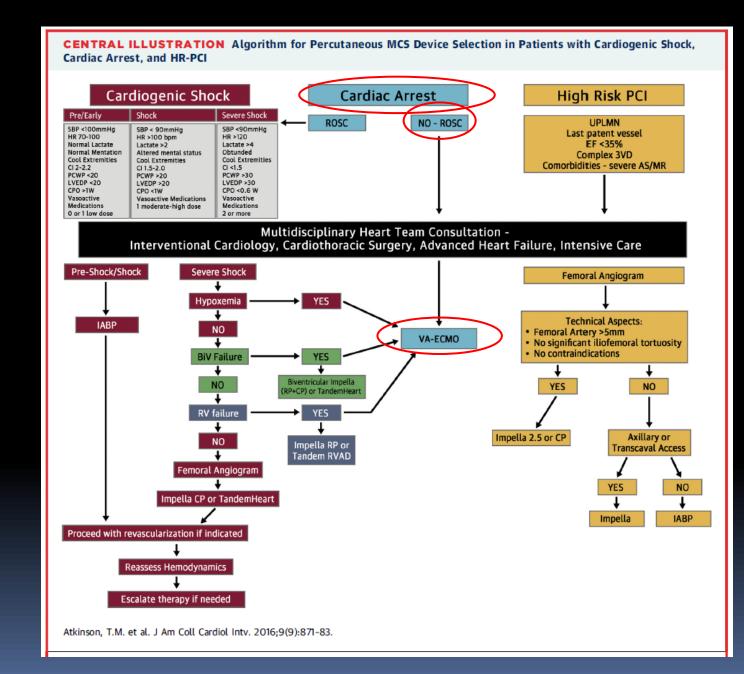
ECPR and Survival to Discharge Time is the Key

Lancet 2008

Extracorporeal Techniques and Invasive Perfusion Devices

2015 (Updated): ECPR may be considered an alternative to conventional CPR for select patients who have a cardiac arrest and for whom the suspected etiology of the cardiac arrest is potentially reversible.

2010 (0ld): There was insufficient evidence to recommend the routine use of ECPR for patients in cardiac arrest. However, in settings where ECPR is readily available, it may be considered when the time without blood flow is brief and the condition leading to the cardiac arrest is reversible (eg, accidental hypothermia, drug intoxication) or amenable to heart transplantation (eg, myocarditis) or revascularization (eg, acute myocardial infarction).



GUIDELINES 2015 CPR & ECC

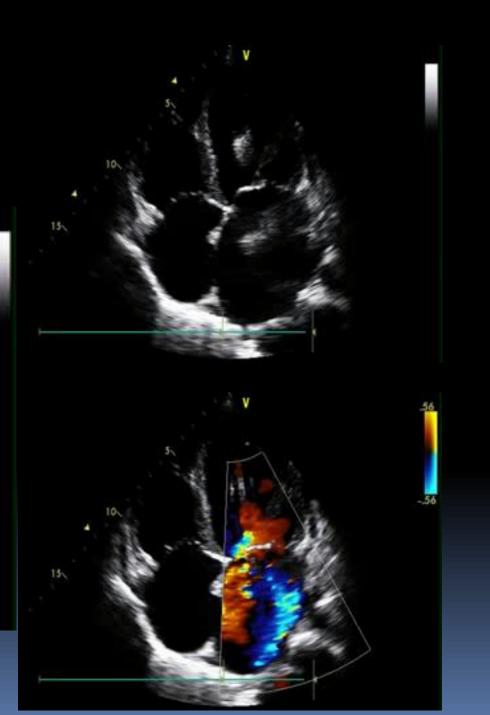
VA-ECMO for ECPR

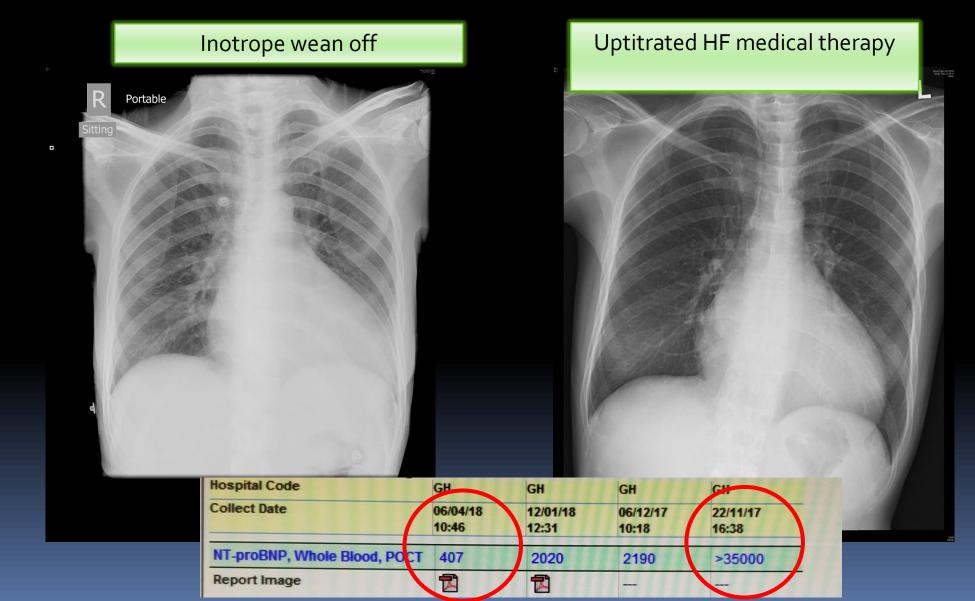
FIGURE 5 ECPR Time for Patient Selection Time to BLS The most important determinant of outcome. Early, high-quality chest compressions determine the success of all subsequent interventions. Immediate bystander CPR or a no-flow time <5 min. CPR initiates a Low Flow State Definition of Refractory OHCA Longer CPR yields worse outcomes. Unresponsive to 30 min. of CPR 35 min. 0 10 15 20 25 min. 50 min. 60 min. No ECLS Flow No ECLS Flow Cutoff Time for Switch to ECPR ECLS Limit CARDIAC ARREST Suggested transition to ECLS at 21 minutes of CPR. No reasonable chance of acceptable Neuro Recovery Limit Acceptable neuro outcome falls to 2% after 15 minutes of CPR. outcome.

The interval from the arrest to the beginning of cardiopulmonary resuscitation (CPR) should be considered a no-flow period (far left), whereas time on CPR is a low-flow period with suboptimal circulation. The probability of survival with good neurological outcome declines rapidly with each minute of conventional CPR. When extracorporeal CPR (ECPR) is delayed until refractory cardiac arrest, CPR, survival is extremely poor (far right). BLS = basic life support; ECLS = extracorporeal life support; OHCA = out-of-hospital cardiac arrest.

JACC Cardiovasc Interv. 2016 May 9;9(9):871-83

Case 2


- F/47 with history of dilated LV with LVEF 36%, severe MR, mod TR
- ADHF 10/2017 increase 30 lbs, orthopnoea
- Cr 99 → 174 umol/L
- Bili 56 → 82 umol/L
- Lactic acid 14.7 mmol/L (N < 2.2)</p>


On dopamine 2:1 @ 6ml/hour

Case 2

The Journal of Heart and Lung Transplantation

http://www.jhltonline.org

Clinical and hemodynamic effects of intra-aortic balloon pump therapy in chronic heart failure patients with cardiogenic shock

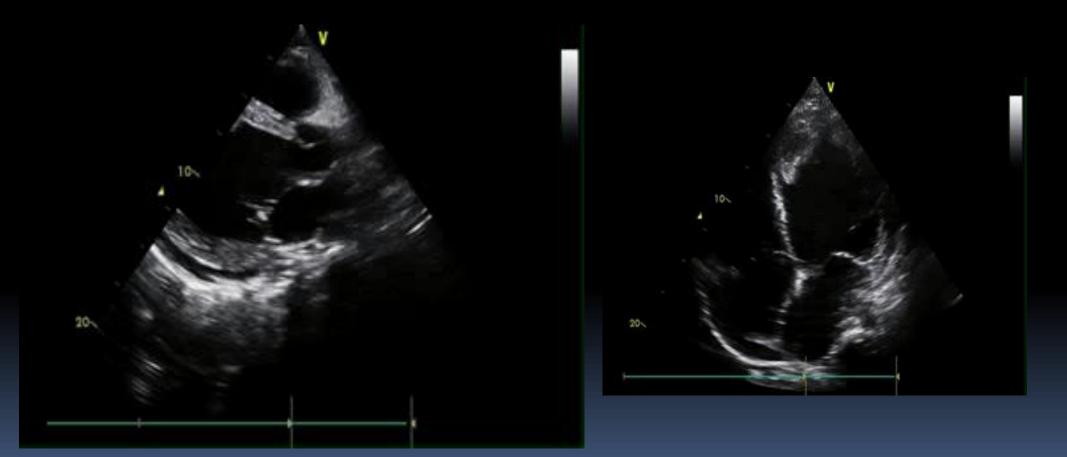
132 chronic heart failure patient with decompensation and cardiogenic shock

Overall 30-day survival 84.1%

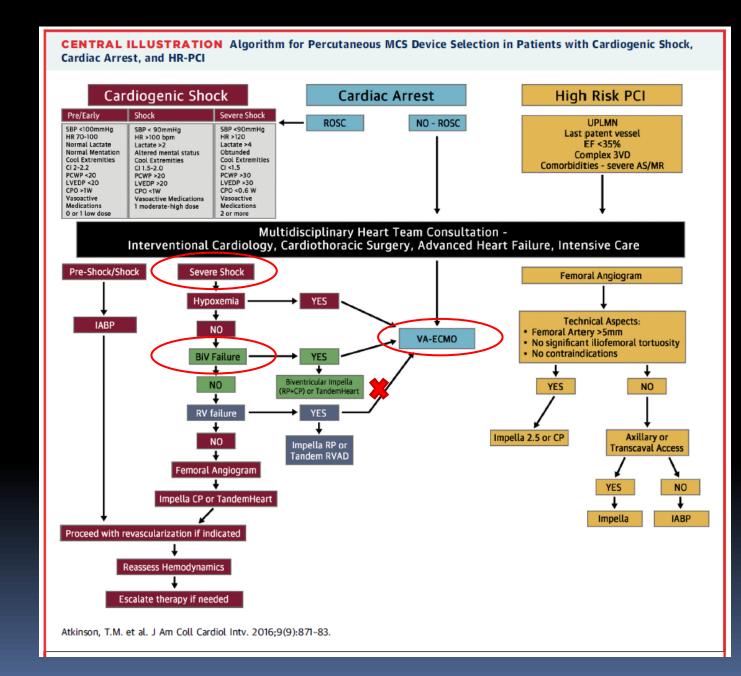
78.0% of patients were successfully bridged to heart replacement therapy or discharge without need for escalation of device support

IABP is a reasonable *first-line device* for chronic heart failure patients with cardiogenic shock.

JACC Cardiovasc Interv. 2016 May 9;9(9):871-83

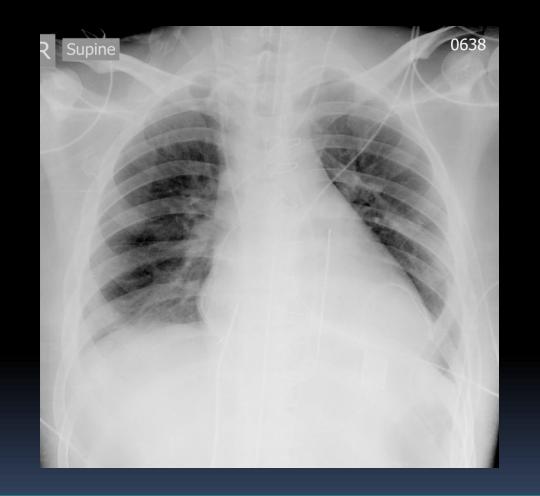

Case 3

- M/20 Good past health
- Cough, Dyspnoea 24/11/2016
- hsTrop | 11421 ng/L (N < 34.2)</p>


hip-op-op-op-op-	- MR - M- M- M	- the the sheet	
Mt-nt-nt-nt-	<u>-474</u>		
╨┉╌┉╷╴╌╷	- Marcal - Marcal	man mangen from	
I Herdendende		- And And And And	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Case 3

Coronary Angiogram Normal


JACC Cardiovasc Interv. 2016 May 9;9(9):871-83

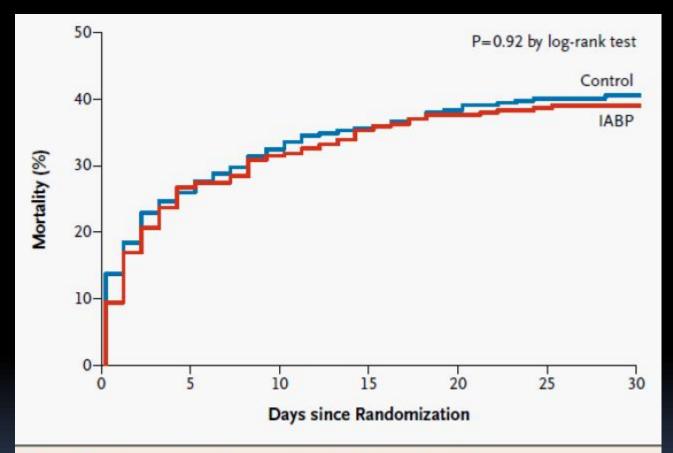
Case 3

Case 3

Biventricular VAD (CentriMag) since 21/12/2016

Heart Transplant 1/3/2017

Are they useful?


Current Evidence

ESC 2016 Guideline - IABP

Recommendations regarding management of patients with cardiogenic shock

Recommendations	Class ²	Level ^p	Ref ^c
In all patients with suspected cardiogenic shock, immediate ECG and echocardiography are recommended.	1	С	
All patients with cardiogenic shock should be rapidly transferred to a tertiary care center which has a 24/7 service of cardiac catheterization, and a dedicated ICU/CCU with availability of short-term mechanical circulatory support.	I.	с	
In patients with cardiogenic shock complicating ACS an immediate coronary angiography is recommended (within 2 hours from hospital admission) with an intent to perform coronary revascularization.	I.	С	
Continous ECG and blood pressure monitoring are recommended.	1	С	
Invasive monitoring with an arterial line is recommended.	1	С	
Fluid challenge (saline or Ringer's lactate, >200 ml/15–30 min) is recommended as the first-line treatment if there is no sign of overt fluid overload.	I.	с	
Intravenous inotropic agents (dobutamine) may be considered to increase cardiac output.	ПР	С	
Vasopressors (norepinephrine preferable over dopamine) may be considered if there is a need to maintain SBP in the presence of persistent hypoperfusion.	ПР	В	558
IABP is not routinely recommended in cardiogenic shock.	Ш	В	585,586
Short-term mechanical circulatory support may be considered in refractory cardiogenic shock depending on patient age, comorbidities and neurological function.	ПЬ	с	

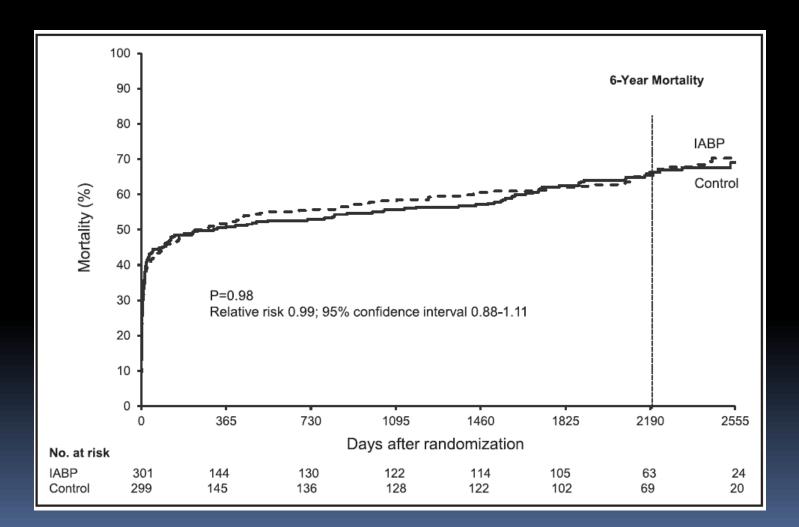

IABP SHOCK II Trial

Figure 1. Time-to-Event Curves for the Primary End Point.

Time-to-event curves are shown through 30 days after randomization for the primary end point of all-cause mortality. Event rates represent Kaplan– Meier estimates.

IABP Shock II Trial 6 Year FU

Circulation. 2019;139:395–403.

IABP -safe procedure

Table 3. Clinical Outcomes.

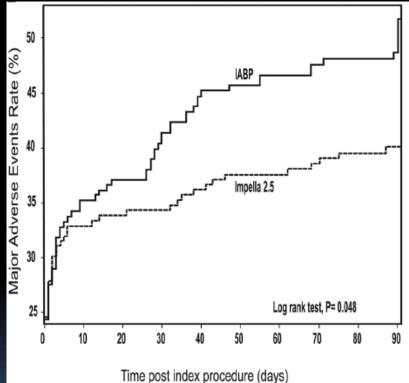
Outcome	IABP (N=300)	Control (N = 298)	P Value	Relative Risk with IABP (95% CI)
	number	(percent)		
Primary end point: all-cause mortality at 30 days	119 (39.7)	123 (41.3)	0.69	0.96 (0.79–1.17)
Reinfarction in hospital	9 (3.0)	4 (1.3)	0.16	2.24 (0.70–7.18)
Stent thrombosis in hospital	4 (1.3)	3 (1.0)	0.71	1.32 (0.30–5.87)
Stroke in hospital	2 (0.7)	5 (1.7)	0.28	0.40 (0.08–2.03)
Ischemic	2 (0.7)	4 (1.3)	0.45	0.49 (0.09–2.71)
Hemorrhagic	0	1 (0.3)	0.50	—
Peripheral ischemic complications requiring intervention in hospital	13 (4.3)	10 (3.4)	0.53	1.29 (0.58–2.90)
Bleeding in hospital*				
Life-threatening or severe	10 (3.3)	13 (4.4)	0.51	0.76 (0.34–1.72)
Moderate	52 (17.3)	49 (16.4)	0.77	1.05 (0.74–1.50)
Sepsis in hospital	47 (15.7)	61 (20.5)	0.15	0.77 (0.54–1.08)

No significant increase in complications

IABP Evidences

TABLE 7 Contemporary Trials With IABP Trial/First Author **Control or No** Prophylactic or Indication Definition Ν IABP Survival IABP Survival **Routine Use** (Ref. #) AMI and CS SBP <90 mm Hg for >30 min 41.3% 39.7% No difference in survival IABP-SHOCK-II (3) 600 or vasoactive medications needed to maintain SBP >90, pulmonary edema, end-organ dysfunction (AMS, cool extremities, UOP <30 ml/h, lactate >2) TACTICs (59) AMI and CS s/p fibrinolysis 57 67% at 30 days 73% at 30 days No significant difference Killip III/IV: 20% at Killip III/IV: 61% at except in Killip III/IV 6 months 6 months patients who received IABP s/p fibrinolysis Waksman et al. (58) AMI and CS 45 19% 46% In-hospital survival improved with IABP use in patients s/p fibrinolysis NRMI (81) AMI and CS Observational study: IABP IABP = 7,268Lytics: 67% Lytics: 49% in-hospital IABP provided substantial compared to no IABP No IABP = 15,912in-hospital mortality benefit in patients with PTCA: 47% in-hospital AMI and CS who among patients given mortality PTCA: 42% received fibrinolysis fibrinolysis or primary mortality angroptasty n-nospitat mortality No difference in No difference in CRISP-AMI (5) Anterior MI with Prophylactic IABP 337 No reduction in infarct size planned PCI survival survival 181,599 No difference in No difference in NCDR (82) High risk including UPLMN, CS, severely STEMI and CS depressed EF (<30%), or mortality mortality STEMI No difference in No difference in BCIS-1 (4) HR-PCI EF <30%, severe CAD: 301 Increase minor bleeding in IABP arm jeopardy score >8, no survival survival shock or STEMI Decreased periprocedural complications in IABP (decreased hypotension) Elective IABP at 5 yrs associated with RRR 34% for all-cause mortality

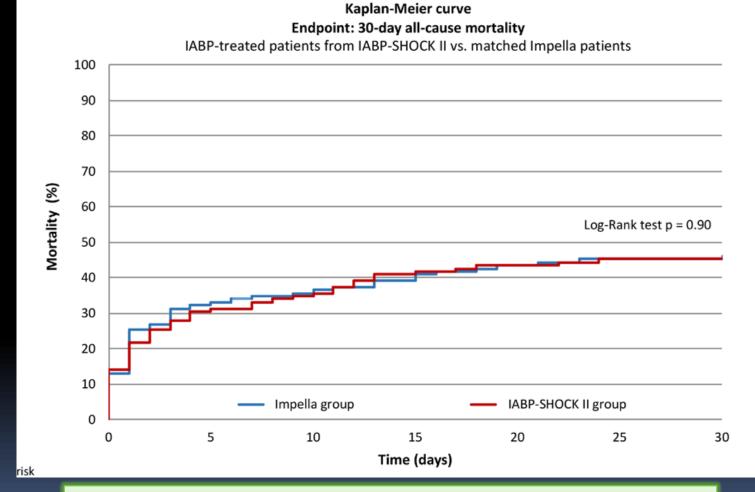
JACC Cardiovasc Interv. 2016 May 9;9(9):871-83


ESC 2016 Guideline - IABP

Recommendations regarding management of patients with cardiogenic shock

Recommendations	Class ²	Level ^p	Ref ^c
In all patients with suspected cardiogenic shock, immediate ECG and echocardiography are recommended.	1	С	
All patients with cardiogenic shock should be rapidly transferred to a tertiary care center which has a 24/7 service of cardiac catheterization, and a dedicated ICU/CCU with availability of short-term mechanical circulatory support.	I.	с	
In patients with cardiogenic shock complicating ACS an immediate coronary angiography is recommended (within 2 hours from hospital admission) with an intent to perform coronary revascularization.	I.	С	
Continous ECG and blood pressure monitoring are recommended.	1	С	
Invasive monitoring with an arterial line is recommended.	1	С	
Fluid challenge (saline or Ringer's lactate, >200 ml/15–30 min) is recommended as the first-line treatment if there is no sign of overt fluid overload.	I.	с	
Intravenous inotropic agents (dobutamine) may be considered to increase cardiac output.	ПР	С	
Vasopressors (norepinephrine preferable over dopamine) may be considered if there is a need to maintain SBP in the presence of persistent hypoperfusion.	ПР	В	558
IABP is not routinely recommended in cardiogenic shock.	Ш	В	585,586
Short-term mechanical circulatory support may be considered in refractory cardiogenic shock depending on patient age, comorbidities and neurological function.	ПЬ	с	

Impella - HR PCI - Protect II study


Table 3. Combined In- and Out-of-	Hospital Hier	archical Outco	mes for th	e Intent-to-T	reat Population	1 I		
		30 Days		90 Days				
	IABP (n=222)	Impella 2.5 (n=225)	Р	IABP (n=219)	Impella 2.5 (n=224)	P		
Composite of major adverse events	40.1	35.1	0.277	49.3	40.6	0.066		
Death	5.9	7.6	0.473	8.7	12.1	0.244		
Stroke/TIA	1.8	0.0	0.043	2.7	0.9	0.144		
Myocardial Infarction	10.4	13.8	0.268	14.2	12.1	0.512		
Repeat revascularization	4.1	1.3	0.075	7.8	3.6	0.056		
Need for cardiac or vascular operation*	1.4	0.9	0.642	1.8	1.3	0.681		
Acute renal dysfunction	4.5	4.0	0.792	4.6	4.0	0.776		
Cardiopulmonary resuscitation/ventricular arrhythmia†	3.2	2.2	0.543	4.1	2.2	0.259		
Aortic valve damage/increase in aortic insufficiency	0.0	0.0		0.0	0.0			
Severe hypotension requiring treatment	8.6	4.9	0.121	5.5	4.0	0.469		
Angiographic failure	0.5	0.4	0.992	0.0	0.4	0.322		

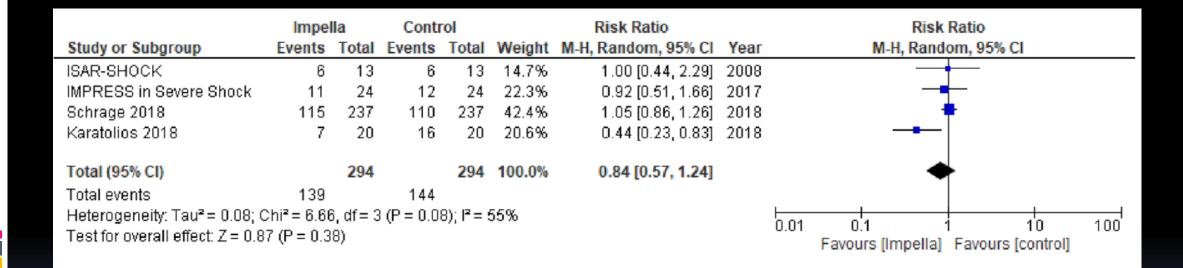
No difference in mortality Impella with less major adverse event

Circulation. 2012 Oct 2;126(14):1717-27.

IABP vs Impella matched cohort study AMI with cardiogenic shock

No difference in Mortality

Circulation. 2019;139:1249–1258.


IABP vs Impella matched cohort study AMI with cardiogenic shock

	Impella vs IAB	P-SHOCK II Trial	Impella vs IABP-Treated Patients From the IABP-SHOCK II Trial				
	Impella Group (n=237)	Control (n=237)	P Value	Impella Group (n=115)	Control (n=115)	P Value	
30-day all-cause mortality	115 (48.5)	110 (46.4)	0.64	53 (46.1)	52 (45.2)	0.90	
Reinfarction in hospital	7 (3.5)	6 (2.5)	0.56	4 (4.0)	4 (3.5)	0.71	
Stent thrombosis in hospital	1 (0.6)	3 (1.3)	0.32	0 (0.0)	2 (1.7)	0.22	
Stroke in hospital	6 (3.5)	6 (2.5)	0.76	2 (2.3)	1 (0.9)	0.56	
Peripheral ischemic complications requiring intervention in hospital	23 (9.8)	9 (3.8)	0.01	11 (9.6)	4 (3.5)	0.05	
Moderate bleeding in hospital	48 (20.3)	40 (16.9)	0.32	22 (19.1)	24 (20.9)	0.72	
Life-threatening or severe bleeding in hospital	20 (8.5)	7 (3.0)	<0.01	12 (10.4)	2 (1.7)	<0.01	
Sepsis in hospital	73 (35.3)	46 (19.4)	<0.01	39 (38.2)	20 (17.4)	<0.01	

Impella more bleeding Impella more sepsis

Circulation. 2019;139:1249–1258.

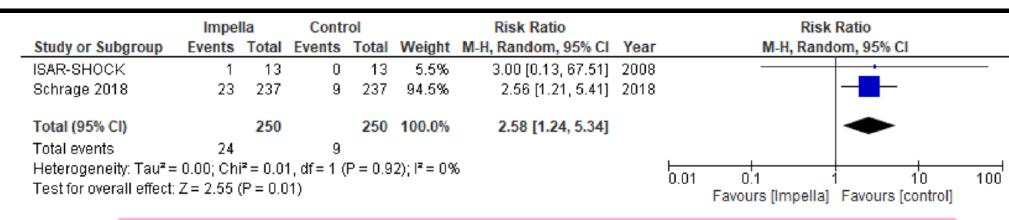
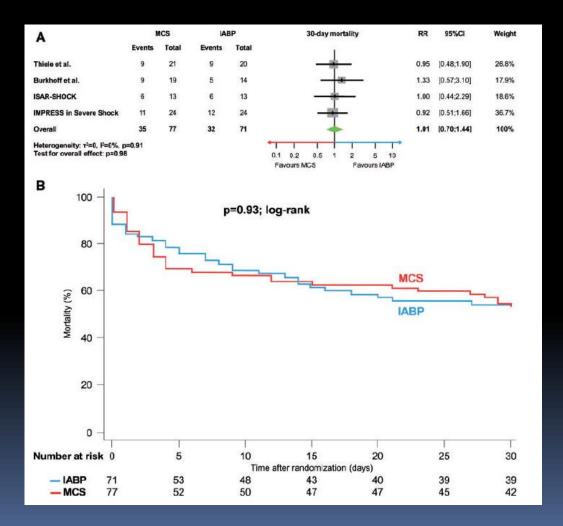
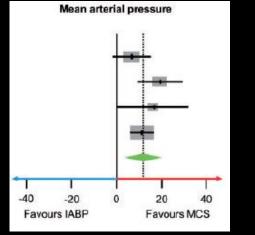
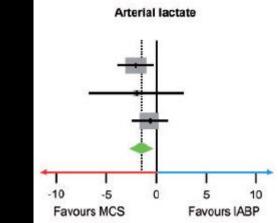
Impella vs IABP meta-analysis

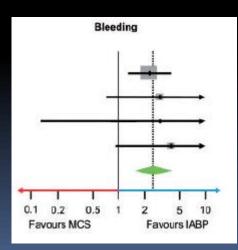
No difference in Mortality

Impella vs IABP meta-analysis

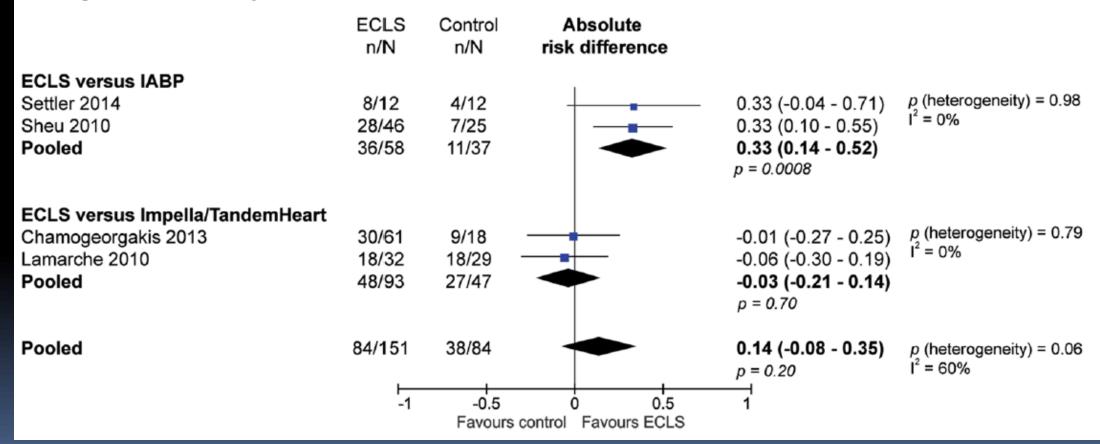
	Impe	lla	Cont	rol	Risk Ratio			Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
ISAR-SHOCK	0	13	0	13		Not estimable	2008	
IMPRESS in Severe Shock	8	24	2	24	25.4%	4.00 [0.95, 16.92]	2017	
Schrage 2018	20	237	7	237	74.6%	2.86 [1.23, 6.63]	2018	
Total (95% CI)		274		274	100.0%	3.11 [1.50, 6.44]		-
Total events	28		9					
Heterogeneity: Tau ² = 0.00; C	Chi² = 0.1€	6, df = 1	(P = 0.6	9); I² = I	0%			
Test for overall effect: Z = 3.0	6 (P = 0.0	02) 📩						0.01 0.1 1 10 100 Favours (Impella) Favours (control)
			Imp	ella	a mo	ore bleedi	ng	r avours (impenaj i r avours (control)

Fig. 3 Forest plot showing risk estimates for short-term major bleeding


Fig. 4 Forest plot show Impella more peripheral ischemic complications

Impella/Tandem Heart vs IABP Meta-analysis

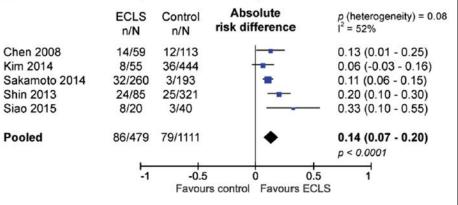


Eur Heart J. 2017 Dec 14;38(47):3523-3531.

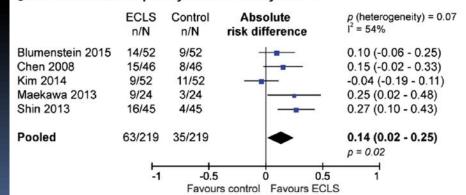
ECMO vs IABP or Impella/Tandem Heart

Cardiogenic shock - 30-day survival

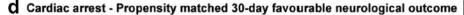
Intensive Care Med (2016) 42:1922–1934

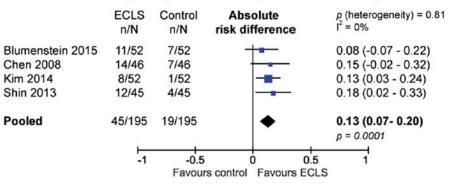

ECPR vs CPR Meta-analysis

1


a Cardiac arrest - 30-day survival

ECLS Control Absolute p (heterogeneity) = 0.007 $l^2 = 64\%$ n/N n/N risk difference Chen 2008 12/59 0.08 (-0.04 - 0.20) 14/113 Chou 2014 15/43 5/23 0.13 (-0.09 - 0.35) Kim 2014 9/55 86/444 -0.03(-0.13-0.07)Lee 2015 18/81 120/874 0.08 (-0.01 - 0.18) 0.26 (0.12 - 0.39) Maekawa 2013 17/53 7/109 Sakamoto 2014 69/260 13/194 0.20 (0.13 - 0.26) Shin 2013 56/321 0.18 (0.07 - 0.29) 30/85 Siao 2015 10/20 11/40 0.22 (-0.03 - 0.48) Pooled 180/656 312/2118 0.13(0.06 - 0.20)p = 0.0002-0.5 0.5 -1 n


D Cardiac arrest - 30-day favourable neurological outcome



C Cardiac arrest - Propensity matched 30-day survival

Favours control Favours ECLS

Intensive Care Med (2016) 42:1922–1934

ECMO + IABP vs ECMO meta-analysis

	Experim	nental	Co	ontrol	Risk Ratio			
Study	Events	Total	Events	Total	: 1	RR	95%-CI	W(random)
Rastan 2010	284	383	105	134	<u>il</u>	0.95	[0.85; 1.05]	12.9%
Kagawa 2012	46	71	15	15	- <u></u> -		• • •	11.2%
Slottosch 2013	50	72	4	5		0.87	[0.55; 1.38]	4.7%
Wang 2013	13	41	31	46		0.47	[0.29; 0.77]	4.4%
Park 2014	21	41	30	55		0.94	[0.64; 1.38]	6.0%
Ro 2014	49	60	139	193	1 1 1	1.13	[0.98; 1.32]	11.8%
Li 2015	49	73	32	50		1.05	[0.81; 1.36]	8.7%
Aso 2016	330	604	708	1046		0.81	[0.74; 0.88]	13.4%
Lin 2016	144	302	110	227	- ja -	0.98	[0.82; 1.18]	11.0%
Muller 2016	50	96	23	42	<u>—</u>	0.95	[0.68; 1.33]	6.9%
Biancari 2017	27	38	68	110		1.15	[0.89; 1.48]	9.0%
Random effects model		1781		1923	\$	0.90	[0.80; 1.02]	100%
Heterogeneity: I-squared=76	.8%, tau-so	juared=	=0.0276, p<	0.0001				
					0.5 1 2			

Artif Organs. 2018 Nov 28. doi: 10.1111/aor.13397. [Epub ahead of print]

ECMO + IABP vs ECMO meta-analysis

	Experin	nental	Co	ontrol	Risk Ratio			
Study	Events	Total	Events	Total	1 1	RR	95%-CI	W(random)
Doll 2004 Park 2014 Ro 2014 Aso 2016	93 26 37 505	144 41 60 604	40 32 81 685	75 55 193 1046		.09 .47	[0.95; 1.55] [0.79; 1.51] [1.13; 1.90] [1.21; 1.35]	4.7% 2.7% 4.2% 88.4%
Random effects model Heterogeneity: I-squared=0%		849 red=0, j	p=0.5263	1369	1		[1.21; 1.35]	100%
					0.75 1 1.5			

Artif Organs. 2018 Nov 28. doi: 10.1111/aor.13397. [Epub ahead of print]

Conclusion Different properties and evidence

Cardiac arrest

- VA-ECMO as ECPR
- AMI Cardiogenic shock
 - PCI done → Consider Impella/VA-ECMO (especially with cardiac arrest)
 - Lytic \rightarrow IABP first \rightarrow escalate if needed
- Decompensated chronic heart failure
 - IABP first line \rightarrow escalate if needed
- RV failure
 - VA-ECMO
 - May consider Impella RP

